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Abstract. For n > r > 1, let f,(n) denote the minimum number q, such that it is possible to partition 
all edges of the complete r-graph on n vertices into q complete r-partite r-graphs. Graham and 
Pollak showed that fz(n) = n - 1. Here we observe that f3(n ) = n - 2 and show that for every fixed 
r > 2, there are positive constants cx(r) and c2(r) such that q(r) < f,(n)" n -f'/2J < c2(r ) for all n > r. 
This solves a problem of Aharoni and Linial. The proof uses some simple ideas of linear algebra. 

1. Introduction 

For  n _> r _> 1, let £(n) denote the min imum number  q, such that  it is possible to 
part i t ion all edges of  the complete r-uniform hypergraph on n vertices into q 
pairwise edge-disjoint complete r-partite r -uniform hypergraphs.  

Obviously,  f~(n) = 1. G r a h a m  and Pollak (I-3, 4], see also [2, 5]) proved that 
f2(n) = n - 1 for all n _> 2. Simple proofs for this result were found by Tverberg [7] 
and Peck [6]. 

Aharoni  and Linial [1] raised the natural  problem of determining or  estimating 
f , (n)  for r > 2. In particular they asked if fr(n)is a nonl inear  function of  n, for some 
fixed r > 2. 

In  this note  we answer this question in the affirmative by proving the following 
theorem, that  determines the asymptot ic  behavior  off,(n) for every fixed r as n tends 
to infinity. 

Theorem 1.1. For  every  f i x e d  r >_ 1, there are two posi t ive  cons tants  c I = q ( r )  and 
c2 = c2(r) such that  

ci n  '2J <_ f,(n) <_ c2" n 

f o r  all n >_ r. 

The lower bound  is proved using some simple ideas of  linear algebra. The 
method  is similar to the one used by Tverberg [7]  and by G r a h a m  and Pollak I3, 4], 
for determining f2(n). The upper bound  is established by a recursive construction. 
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It is worth  not ing that  our  cons t ruc t ion  supplies the exact value of f3(n) = n - 2 
for all n > 3. 

2. The Lower Bound 

We start  with the following easy observat ion.  

L e m m a  2.1. For every n >_ r > 2 

fr(n) > f,_~(n - 1). 

Proof. Suppose  all edges of  the comple te  r -uniform hypergraph  on a set N = { 1, 2, 
. . . ,  n} of  n vertices are par t i t ioned into q = f~(n) r-part i te  r -graphs  ( =  r uni form 
hypergraphs)  H*, H 2 . . . . .  H q. Let El denote  the set of  edges of H i and put  El = 
{e - {n}: eeEi, nee}. Clearly each n o n e m p t y  ffS i is the set of  edges of  a comple te  
(r - 1)-partite (r - 1)-graph. Moreover ,  the set of  all n o n e m p t y  E,'s forms a de- 
compos i t ion  of all edges of  the comple te  r - 1-uniform hypergraph  on the n - 1 
vertices N - {n}. Hence fr-~ (n -- 1) < q = f,(n), as needed. [ ]  

In view of L e m m a  2.1, the lower  bound  in T h e o r e m  1.1 for odd values of  r 
follows f rom the lower bound  for even values of  r, which we prove  next. 

L e m m a  2.2. For all n >_ 2k >_ 2 

(n)  ( n ) (  n ) . . . .  ... ( n ] )  

fzk(n) >- 2" k k - 1  k - 3 k + l - 2"fk/2 

f (n )  k-subsetsofN={1,2,  .,n} Proof.  Let _K = {K c N: JK] = k} b e t h e s e t o  all k "" 

and associate each Ke_K with a var iable  x K. Let H be a complete  2k-part i te  
2k-graph, whose (pairwise disjoint) vertex classes V1, V2,..., V2k are subsets of  N. 
By definition, the edges of H are all 2k-subsets A c N, such that  [A fl V~] = 1 for 
t < i _< 2k. We define, for each such H, a quadra t ic  form Q(I-I) in the variables 
{XK: K ~_K} as follows. 

o(n) = E{LA(H)  " LB(H):A,  B e { l ,  2 . . . . .  2k}, [AI=tB]=k,  A n B = ; g ,  
1 cA},  where, for C c {1, 2 . . . .  ,2k}, [C[ = k, 

Lc(U ) = ~,, {x~: K ~ K , [ K A  Vcl = 1 for all c~C}. 

1 /2k \  
Thus,  Q(H)is a sum of ~ k ) p roduc t s  of the form L4(H)" LB(H), in which each 

\ / 

factor is a linear combina t ion  of the xr's. 
Put  q = f2,(n), and suppose  the edges of  the complete  r -graph on N are part i-  

t ioned into q r-part i te  r -graphs  H x, H 2 . . . .  , H q. One  can easily check tha t  

q 

Q(H i) = ~{xr ' xL:  K, LsK ,  K N L  = ~}. (2.1) 
i=X 

Indeed, if K, L e K  and K fl L - -  Z~ then the p roduc t  XK'XL appears  only in Q(Hi), 
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where H i is the unique H J containing K U L as an edge, and if K (3 L # ~,  then Xk" XL 
appears in no Q(Hi). 

We next claim that 

1 k 2 (2.2) 
= Z 2 xK.  5i=~o ( -  1)iA~N,I~E=, r ~ r , a ~ r  

Indeed, if K, L~ K and [K ALI =.1", (0 _< j < k), then the coefficient of xK" xL in the 
/ . \  

ha~d ~d~ of (~2)~s ZJ~o(-1) ' (~ , ) ,  which i~ ~ if j = 0 a~d 0 if j )  0 ~o~ right 

K = L ,  thecoefficientsofxZintherighthandsideof(2.2) is~21=o(-1) i =0 .  

Thus (2.2) holds. 
Substituting (2.2) and the definition of the Q(Hi)'s into (2. I) we conclude that 

E E{L~(H')'L,(Hi): A,B ~ {1 . . . . .  2k},[A[ = [B[ = k, ANB = e ,  1 cA} 

,~1 (2.3) 
,k  ( )2 

_:50 2 2 x~ 

( )-dimensional  n Let V be the linear subspace of the real k space of the XK'S 

determined by the following set of 

/'/ n 

~ ( 2 k ) ' q + ( k n l ) + ( k _ 3 ) + ' " + ( k + l _ 2 [ k / 2 ]  ) 

linear equations. 

f La(Hi)=Oforalll <_i<qandAc{1 ,2  .. . . .  2k} , [Al=k ,  l e A .  

~ XK = 0 for all A ~N,  lAle{k-- 1, k - 3  . . . . .  k +  1 - 2[k/2]} (2.4) 
K ~ K , A  K 

We claim that V is the zero subspace. Indeed, suppose {Xk: K s_K} e V. Then XK 
satisfies (2.4), and in view of (2.3) we conclude that 

0 = ~ ( - 1 )  ~ Z ~ +  Z Z ~,, + , 
K E K  A ~ N ,  IA t=k-2  ~K,A  K 

and hence xr  -- 0 for all K E RT. 

Therefore, the number of linear equations in the system (2.4) is at least ( ~ )  and 

the assertion of Lemma 2.2 follows. []  

Combining Lemmas 2.1 and 2.2 we obtain 

C o r o l l a r y  2.3. For every fixed r > 1, f~(n) > cr" nfr/21" (1 + o(1)) as n --* o% where 

2[r/2]! 
cr - (2 [ r /2 ] ) !  
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Remarks. 
1) Lemma  2.2 with k = 1 reduces to Graham-Pol l ak ' s  result; f2(n) > n - 1, (which 
is, of  course, sharp). 
2) Lemma 2.1 with r = 3 asserts f3(n) > f2(n - 1) = n - 2. As shown in the next  
section this result is also sharp. 

3) A trivial lower bound for fr(n) is fr(n) > r r since the number  of edges of 

any complete  r-parti te r-graph on n vertices is not  greater  than (n/r)'. This trivial 
bound  is much weaker than the one proved above for all r = o(n), but is better for, 
e.g., r = In/Z]. 

3. The Upper Bound 

In this section we prove the upper  bound  for fr(n) given in Theorem 1.1, using some 
simple recursive constructions. We first determine f3(n) for all n _> 3. 

Lemma  3.1. For all n >__ 3 

f 3 ( n )  = n - 2 .  

Proof. By Lemma  2.1 and Graham-Pol lak ' s  result 

f3(n) > f z (n  -- 1) = n - 2. 

We prove that f3(n) < n - 2 by induction on n. For  n = 2, 3 the result is trivial. 
Assuming the result for all n', n' < n, we prove it for n, (n > 3). Put  N = { 1, 2 . . . . .  n} 
and N~ = {2i - 1, 2i} for 1 _< i < In/2]. Fo r  odd  n define also Nr, m = {n}. We claim 
that 

f3(n) < In/Z] + f3([n/2]). (3.1) 

Indeed, put  q = f3([n/2]) and let H 1 . . . . .  H q be a decomposi t ion of the complete  
3-graph on In~2] vertices { 1, 2 . . . .  , I-n/2] } into q complete 3-partite 3-graphs. Fo r  
1 < i < q, let V(, V~ and l/j denote the vertex-classes of H i. Let H~ be the 3-parti te 
3-graph whose vertex classes are U {N~:j~ V~}, U {Nj:j~ Vj} and U {N~: j ~  V3~}. Fo r  
1 _<j < In/2], let/~q+i be the 3-partite 3-graph whose vertex classes are {_2i - 1}, 
{2i} and N - { 2 i -  1,2i}. One can easily check that  the hypergraphs t--sr4~q+t"/2~J~=l 
form a dcomposi t ion of all edges of the compole te  3-graph on N into 3-parti te 
3-graphs. This establishes (3.1). Hence, by the induct ion hypothesis, 

f3(n) _< In/Z] + f3([n/2]) <_ In/Z] + In~2] - 2 = n - 2. [] 

Let N1 and N 2 be two disjoint sets of vertices, and let Hi be an ri-graph on N i, 
(I < i _< 2). We denote  by H~ + Hz the (r~ + rz)-graph on N1 U Nz whose edges are 
all edges ex U e2, where e~ is an edge of Hi (i = 1, 2). One can easily check that  if Hi 
is a complete  rcpart i te  r~-graph then H~ + Hz is a complete  (rl + rz)-partite (r~ + rz)- 
graph. For  notat ional  convenience let us agree that  fo(n) = 1 for all n. 

Lemma 3.2. Suppose n > r > 4, then 

f~(n) < E f~([n/2])" f,_,([n/2]). 
i = 0  
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Proof.  Put  N = {1, 2 . . . . .  n}, N 1 = {1, 2 . . . . .  [n/23}, Nz = {En/2] + 1 . . . . .  n}. Fo r  
0 _< i _< r let _H ~ be a family o f f ( [ n / 2 ] )  c o m p l e t e / - p a r t i t e / - g r a p h s  that  decompose  
the comple t e / -g r aph  on N1. (_H ° consists of  one graph whose only edge is the e m p t y  
edge.) Similarly, let ~ be a family of  f~([n/2]) complete  j -par t i te  j -g raphs  that  de- 
compose  the comple te  j -g raph  on Nz (0 < j  < r). Define a family _F o f Z ~ = o f ( [ n / 2 ] ) .  
f~_~([n/2]) comple te  r -par t i te  r -graphs  on N by 

_F = ~J {H i -b G "-i'. HIEH i_ , G'-iEG'-II_ ,. 
i=0 

One can easily check that  the member s  of_F form a decompos i t ion  of  the complete  
r -graph on N. This completes  the proof.  [ ]  

We can now prove  the upper  bound  for f~(n) given in T h e o r e m  1.1 by double  
induct ion on r and n. Since f~(n) is a m o n o t o n e  increasing function of n, it is enough 
to p rove  it when n is a power  of  2, which we assume, for convenience. By L e m m a  
3.1 (and trivial construct ions  for r _< 2)f~(n) <_ cr" n ~r/21 for r = 0, 1, 2, 3 and  every 
n, where c o = c 1 = c z = c3 = 1. Clearly, if n < r then f~(n) < c r •/l [r]2] for every 
positive cr. Assuming that  

f , , (n ' )  < G'" n't"/2J (3.2) 

for all r '  < r and all n '  = 2 i, and for r '  = r and  2 ) = n' < n = 2 i, we prove  that  if c, 
is p roper ly  chosen then (3.2) holds also for (r, n). Indeed,  by L e m m a  3.2 and the 
induct ion hypothesis  

£(n) <_ L fi(n/2)f~-i(n/2) <- L ci" cr-i(n/2) ti/2l+[(r-i)/2] 
i=0 i=0 

L l (  r--i ~ <- ci" c,-i'(n/2ff/2J = 2[r/2] 2Cr "k- 2 Ci'Cr-i nit/Z]. 
i=O i=l / 

Hence, if we define the cr's by 

C O : C  1 ---~C 2 --~C 3 : 1 

,-1 (3.3) 
and cr ' (2  ['/21 - 2) = Z c i ' G - i  for r _> 4, 

i=1 

then f~(n) < c~" n ['/2j for every r and every n = 2 i. This implies the validity of  the 
upper  bound  for fr(n) given in Theo rem 1.1. 

R e m a r k s .  

1) One can easily check that  the cons tan ts  {cr}]°=o defined by (3.3) satisfy 

r--1 

cr -< i-r/2]----~" 

By a somewha t  more  careful analysis we can show that  the construct ion described 

1 k 
above  implies that  for every fixed k > 1 f2k(n) < ~ - n  (1 + o(1)), as n --* oe. This 

should be c o m p a r e d  to the lower bound  
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2k! . k" f2k(n) > ~ . ~  n (1 + o(1)) 

given in Coro l l a ry  2.3. 

2) I t  would  be interes t ing to de te rmine  f,(n) precisely for r > 3, or  to improve  our  
est imates.  In par t icu lar ,  L e m m a  2.2 and L e m m a  3.2 for r = 4 imply  that  

1 2 1 2 
g(n - 3 n ) < f 4 ( n ) < 5 ( n  -5n+6)  

for all n. It would  be interes t ing to decide which of these two bounds  is closer  to 
the truth.  
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