Decomposition of the Complete r-Graph into Complete \boldsymbol{r}-Partite \boldsymbol{r}-Graphs*

Noga Alon
Department of Mathematics, Tel Aviv University, Tel Aviv, Israel, and
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

For $n \geq r \geq 1$, let $f_{r}(n)$ denote the minimum number q, such that it is possible to partition all edges of the complete r-graph on n vertices into q complete r-partite r-graphs. Graham and Pollak showed that $f_{2}(n)=n-1$. Here we observe that $f_{3}(n)=n-2$ and show that for every fixed $r \geq 2$, there are positive constants $c_{1}(r)$ and $c_{2}(r)$ such that $c_{1}(r) \leq f_{r}(n) \cdot n^{-[r / 2]} \leq c_{2}(r)$ for all $n \geq r$. This solves a problem of Aharoni and Linial. The proof uses some simple ideas of linear algebra.

1. Introduction

For $n \geq r \geq 1$, let $f_{r}(n)$ denote the minimum number q, such that it is possible to partition all edges of the complete r-uniform hypergraph on n vertices into q pairwise edge-disjoint complete r-partite r-uniform hypergraphs.

Obviously, $f_{1}(n)=1$. Graham and Pollak ($[3,4]$, see also $[2,5]$) proved that $f_{2}(n)=n-1$ for all $n \geq 2$. Simple proofs for this result were found by Tverberg [7] and Peck [6].

Aharoni and Linial [1] raised the natural problem of determining or estimating $f_{r}(n)$ for $r>2$. In particular they asked if $f_{r}(n)$ is a nonlinear function of n, for some fixed $r>2$.

In this note we answer this question in the affirmative by proving the following theorem, that determines the asymptotic behavior of $f_{r}(n)$ for every fixed r as n tends to infinity.

Theorem 1.1. For every fixed $r \geq 1$, there are two positive constants $c_{1}=c_{1}(r)$ and $c_{2}=c_{2}(r)$ such that

$$
c_{1} \cdot n^{[r / 2]} \leq f_{r}(n) \leq c_{2} \cdot n^{[r / 2]}
$$

for all $n \geq r$.
The lower bound is proved using some simple ideas of linear algebra. The method is similar to the one used by Tverberg [7] and by Graham and Pollak [3, 4], for determining $f_{2}(n)$. The upper bound is established by a recursive construction.

[^0]It is worth noting that our construction supplies the exact value of $f_{3}(n)=n-2$ for all $n \geq 3$.

2. The Lower Bound

We start with the following easy observation.
Lemma 2.1. For every $n \geq r \geq 2$

$$
f_{r}(n) \geq f_{r-1}(n-1)
$$

Proof. Suppose all edges of the complete r-uniform hypergraph on a set $N=\{1,2$, $\ldots, n\}$ of n vertices are partitioned into $q=f_{r}(n) r$-partite r-graphs ($=r$ uniform hypergraphs) $H^{1}, H^{2}, \ldots, H^{q}$. Let E_{i} denote the set of edges of H^{i} and put $\bar{E}_{i}=$ $\left\{e-\{n\}: e \in E_{i}, n \in e\right\}$. Clearly each nonempty \bar{E}_{i} is the set of edges of a complete $(r-1)$-partite $(r-1)$-graph. Moreover, the set of all nonempty \bar{E}_{i} 's forms a decomposition of all edges of the complete $r-1$-uniform hypergraph on the $n-1$ vertices $N-\{n\}$. Hence $f_{r-1}(n-1) \leq q=f_{r}(n)$, as needed.

In view of Lemma 2.1, the lower bound in Theorem 1.1 for odd values of r follows from the lower bound for even values of r, which we prove next.

Lemma 2.2. For all $n \geq 2 k \geq 2$

$$
f_{2 k}(n) \geq 2 \cdot \frac{\binom{n}{k}-\binom{n}{k-1}-\binom{n}{k-3}-\cdots-\binom{n}{k+1-2 \cdot\lceil k / 2\rceil}}{\binom{2 k}{k}}
$$

Proof. Let $\underline{K}=\{K \subset N:|K|=k\}$ be the set of all $\binom{n}{k} k$-subsets of $N=\{1,2, \ldots, n\}$ and associate each $K \in \underline{K}$ with a variable x_{K}. Let H be a complete $2 k$-partite $2 k$-graph, whose (pairwise disjoint) vertex classes $V_{1}, V_{2}, \ldots, V_{2 k}$ are subsets of N. By definition, the edges of H are all $2 k$-subsets $A \subset N$, such that $\left|A \cap V_{i}\right|=1$ for $1 \leq i \leq 2 k$. We define, for each such H, a quadratic form $Q(H)$ in the variables $\left\{x_{K}: K \in \underline{K}\right\}$ as follows.
$Q(H)=\sum\left\{L_{A}(H) \cdot L_{B}(H): A, B \subset\{1,2, \ldots, 2 k\},|A|=|B|=k, A \cap B=\varnothing\right.$, $1 \in A\}$, where, for $C \subset\{1,2, \ldots, 2 k\},|C|=k$,

$$
L_{C}(H)=\sum\left\{x_{K}: K \in \underline{K},\left|K \cap V_{c}\right|=1 \text { for all } c \in C\right\} .
$$

Thus, $Q(H)$ is a sum of $\frac{1}{2}\binom{2 k}{k}$ products of the form $L_{A}(H) \cdot L_{B}(H)$, in which each factor is a linear combination of the x_{K} 's.

Put $q=f_{2 k}(n)$, and suppose the edges of the complete r-graph on N are partitioned into $q r$-partite r-graphs $H^{1}, H^{2}, \ldots, H^{q}$. One can easily check that

$$
\begin{equation*}
\sum_{i=1}^{q} Q\left(H^{i}\right)=\sum\left\{x_{K} \cdot x_{L}: K, L \in K, K \cap L=\varnothing\right\} \tag{2.1}
\end{equation*}
$$

Indeed, if $K, L \in K$ and $K \cap L=\varnothing$ then the product $x_{K} \cdot x_{L}$ appears only in $Q\left(H^{i}\right)$,
where H^{i} is the unique H^{j} containing $K \cup L$ as an edge, and if $K \cap L \neq \varnothing$, then $x_{k} \cdot x_{L}$ appears in no $Q\left(H^{i}\right)$.

We next claim that

$$
\left\{\begin{array}{c}
\sum\left\{x_{K} \cdot x_{L}: K, L \in \underline{K}, K \cap L=\varnothing\right\} \tag{2.2}\\
= \\
\frac{1}{2} \sum_{i=0}^{k}(-1)^{i} \sum_{A \subset N,|A|=i}\left(\sum_{K \in K, A \subset K} x_{K}\right)^{2} .
\end{array}\right.
$$

Indeed, if $K, L \in K$ and $|K \cap L|=j,(0 \leq j<k)$, then the coefficient of $x_{K} \cdot x_{L}$ in the right hand side of (2.2) is $\sum_{i=0}^{j}(-1)^{i}\binom{j}{i}$, which is 1 if $j=0$ and 0 if $j>0$. For $K=L$, the coefficients of x_{K}^{2} in the right hand side of (2.2) is $\frac{1}{2} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}=0$. Thus (2.2) holds.

Substituting (2.2) and the definition of the $Q\left(H^{i}\right)$'s into (2.1) we conclude that

$$
\left\{\begin{array}{c}
\sum_{i=1}^{q} \sum\left\{L_{A}\left(H^{i}\right) \cdot L_{B}\left(H^{i}\right): A, B \subset\{1, \ldots, 2 k\},|A|=|B|=k, A \cap B=\varnothing, 1 \in A\right\} \tag{2.3}\\
=\frac{1}{2} \sum_{i=0}^{k}(-1)^{i} \sum_{A \in N,|A|=i}\left(\sum_{K \in \mathbb{X}, A \subset K} x_{K}\right)^{2}
\end{array}\right.
$$

Let V be the linear subspace of the real $\binom{n}{k}$-dimensional space of the x_{K} 's determined by the following set of

$$
\frac{1}{2}\binom{2 k}{k} \cdot q+\binom{n}{k-1}+\binom{n}{k-3}+\cdots+\binom{n}{k+1-2\lceil k / 2\rceil}
$$

linear equations.

$$
\left\{\begin{array}{c}
L_{A}\left(H^{i}\right)=0 \text { for all } 1 \leq i \leq q \text { and } A \subset\{1,2, \ldots, 2 k\},|A|=k, 1 \in A . \tag{2.4}\\
\sum_{K \in \underline{K}, A \subset K} x_{K}=0 \text { for all } A \subset N,|A| \in\{k-1, k-3, \ldots, k+1-2\lceil k / 2\rceil\}
\end{array}\right.
$$

We claim that V is the zero subspace. Indeed, suppose $\left\{\bar{x}_{k}: K \in \underline{K}\right\} \in V$. Then \bar{x}_{K} satisfies (2.4), and in view of (2.3) we conclude that

$$
0=\frac{1}{2} \cdot(-1)^{k}\left\{\sum_{K \in \underline{K}} \bar{x}_{K}^{2}+\sum_{A \subset N,|A|=k-2}\left(\sum_{K \in \underline{K}, A \subset K} \bar{x}_{K}\right)^{2}+\cdots\right\},
$$

and hence $\bar{x}_{K}=0$ for all $K \in \bar{K}$.
Therefore, the number of linear equations in the system (2.4) is at least $\binom{n}{k}$ and the assertion of Lemma 2.2 follows.

Combining Lemmas 2.1 and 2.2 we obtain
Corollary 2.3. For every fixed $r \geq 1, f_{r}(n) \geq c_{r} \cdot n^{[r / 2]} \cdot(1+o(1))$ as $n \rightarrow \infty$, where

$$
c_{r}=\frac{2[r / 2]!}{(2[r / 2])!} .
$$

Remarks.

1) Lemma 2.2 with $k=1$ reduces to Graham-Pollak's result; $f_{2}(n) \geq n-1$, (which is, of course, sharp).
2) Lemma 2.1 with $r=3$ asserts $f_{3}(n) \geq f_{2}(n-1)=n-2$. As shown in the next section this result is also sharp.
3) A trivial lower bound for $f_{r}(n)$ is $f_{r}(n) \geq\binom{ n}{r} /\left(\frac{n}{r}\right)^{r}$, since the number of edges of any complete r-partite r-graph on n vertices is not greater than $(n / r)^{r}$. This trivial bound is much weaker than the one proved above for all $r=o(n)$, but is better for, e.g., $r=[n / 2]$.

3. The Upper Bound

In this section we prove the upper bound for $f_{r}(n)$ given in Theorem 1.1, using some simple recursive constructions. We first determine $f_{3}(n)$ for all $n \geq 3$.

Lemma 3.1. For all $n \geq 3$

$$
f_{3}(n)=n-2
$$

Proof. By Lemma 2.1 and Graham-Pollak's result

$$
f_{3}(n) \geq f_{2}(n-1)=n-2
$$

We prove that $f_{3}(n) \leq n-2$ by induction on n. For $n=2,3$ the result is trivial. Assuming the result for all $n^{\prime}, n^{\prime}<n$, we prove it for $n,(n>3)$. Put $N=\{1,2, \ldots, n\}$ and $N_{i}=\{2 i-1,2 i\}$ for $1 \leq i \leq[n / 2]$. For odd n define also $N_{[n / 2]}=\{n\}$. We claim that

$$
\begin{equation*}
f_{3}(n) \leq[n / 2]+f_{3}(\lceil n / 2\rceil) \tag{3.1}
\end{equation*}
$$

Indeed, put $q=f_{3}(\lceil n / 2\rceil)$ and let H^{1}, \ldots, H^{q} be a decomposition of the complete 3 -graph on $\lceil n / 2\rceil$ vertices $\{1,2, \ldots,\lceil n / 2\rceil\}$ into q complete 3-partite 3-graphs. For $1 \leq i \leq q$, let V_{1}^{i}, V_{2}^{i} and V_{3}^{i} denote the vertex-classes of H^{i}. Let \vec{H}^{i} be the 3-partite 3-graph whose vertex classes are $\cup\left\{N_{j}: j \in V_{1}^{i}\right\}, \cup\left\{N_{j}: j \in V_{2}^{i}\right\}$ and $\cup\left\{N_{j}: j \in V_{3}^{i}\right\}$. For $1 \leq j \leq[n / 2]$, let \bar{H}^{q+j} be the 3-partite 3-graph whose vertex classes are $\{2 i-1\}$, $\{2 i\}$ and $N-\{2 i-1,2 i\}$. One can easily check that the hypergraphs $\left\{\vec{H}^{i}\right\}_{i=1}^{q+[n / 2]}$ form a dcomposition of all edges of the compolete 3-graph on N into 3-partite 3-graphs. This establishes (3.1). Hence, by the induction hypothesis,

$$
f_{3}(n) \leq[n / 2]+f_{3}(\lceil n / 2\rceil) \leq[n / 2]+\lceil n / 2\rceil-2=n-2
$$

Let N_{1} and N_{2} be two disjoint sets of vertices, and let H_{i} be an r_{i}-graph on N_{i}, $(1 \leq i \leq 2)$. We denote by $H_{1}+H_{2}$ the $\left(r_{1}+r_{2}\right)$-graph on $N_{1} \cup N_{2}$ whose edges are all edges $e_{1} \cup e_{2}$, where e_{i} is an edge of $H_{i}(i=1,2)$. One can easily check that if H_{i} is a complete r_{i}-partite r_{i}-graph then $H_{1}+H_{2}$ is a complete $\left(r_{1}+r_{2}\right)$-partite $\left(r_{1}+r_{2}\right)$ graph. For notational convenience let us agree that $f_{0}(n)=1$ for all n.

Lemma 3.2. Suppose $n \geq r \geq 4$, then

$$
f_{r}(n) \leq \sum_{i=0}^{r} f_{i}([n / 2]) \cdot f_{r-i}(\lceil n / 2\rceil)
$$

Proof. Put $N=\{1,2, \ldots, n\}, N_{1}=\{1,2, \ldots,[n / 2]\}, N_{2}=\{[n / 2]+1, \ldots, n\}$. For $0 \leq i \leq r$ let \underline{H}^{i} be a family of $f_{i}([n / 2])$ complete i-partite i-graphs that decompose the complete i-graph on N_{1}. (\underline{H}^{0} consists of one graph whose only edge is the empty edge.) Similarly, let G^{j} be a family of $f_{j}([n / 2\rceil)$ complete j-partite j-graphs that decompose the complete j-graph on $N_{2}(0 \leq j \leq r)$. Define a family \underline{F} of $\sum_{i=0}^{r} f_{i}([n / 2])$. $f_{r-i}(\lceil n / 2\rceil)$ complete r-partite r-graphs on N by

$$
F=\bigcup_{i=0}^{r}\left\{H^{i}+G^{r-i}: H^{i} \in \underline{H}^{i}, G^{r-i} \in \underline{G}^{r-i}\right\} .
$$

One can easily check that the members of F form a decomposition of the complete r-graph on N. This completes the proof.

We can now prove the upper bound for $f_{r}(n)$ given in Theorem 1.1 by double induction on r and n. Since $f_{r}(n)$ is a monotone increasing function of n, it is enough to prove it when n is a power of 2 , which we assume, for convenience. By Lemma 3.1 (and trivial constructions for $r \leq 2$) $f_{r}(n) \leq c_{r} \cdot n^{[r / 2]}$ for $r=0,1,2,3$ and every n, where $c_{0}=c_{1}=c_{2}=c_{3}=1$. Clearly, if $n<r$ then $f_{r}(n) \leq c_{r} \cdot n^{[r / 2]}$ for every positive c_{r}. Assuming that

$$
\begin{equation*}
f_{r^{\prime}}\left(n^{\prime}\right) \leq c_{r^{\prime}} \cdot n^{\prime\left\{r^{\prime} / 2\right\}} \tag{3.2}
\end{equation*}
$$

for all $r^{\prime}<r$ and all $n^{\prime}=2^{j}$, and for $r^{\prime}=r$ and $2^{j}=n^{\prime}<n=2^{i}$, we prove that if c_{r} is properly chosen then (3.2) holds also for (r, n). Indeed, by Lemma 3.2 and the induction hypothesis

$$
\begin{aligned}
f_{r}(n) & \leq \sum_{i=0}^{r} f_{i}(n / 2) f_{r-i}(n / 2) \leq \sum_{i=0}^{r} c_{i} \cdot c_{r-i}(n / 2)^{[i / 2]+[(r-i) / 2]} \\
& \leq \sum_{i=0}^{r} c_{i} \cdot c_{r-i} \cdot(n / 2)^{[r / 2]}=\frac{1}{2^{[r / 2]}}\left(2 c_{r}+\sum_{i=1}^{r-1} c_{i} \cdot c_{r-i}\right) n^{[r / 2]}
\end{aligned}
$$

Hence, if we define the c_{r} 's by

$$
\begin{gather*}
c_{0}=c_{1}=c_{2}=c_{3}=1 \\
\text { and } c_{r} \cdot\left(2^{[r / 2]}-2\right)=\sum_{i=1}^{r-1} c_{i} \cdot c_{r-i} \text { for } r \geq 4 \tag{3.3}
\end{gather*}
$$

then $f_{r}(n) \leq c_{r} \cdot n^{[r / 2]}$ for every r and every $n=2^{i}$. This implies the validity of the upper bound for $f_{r}(n)$ given in Theorem 1.1.

Remarks.

1) One can easily check that the constants $\left\{c_{r}\right\}_{r=0}^{\infty}$ defined by (3.3) satisfy

$$
c_{r} \leq \frac{8^{r-1}}{\lceil r / 2\rceil!}
$$

By a somewhat more careful analysis we can show that the construction described above implies that for every fixed $k \geq 1 f_{2 k}(n) \leq \frac{1}{k!} \cdot n^{k}(1+o(1))$, as $n \rightarrow \infty$. This should be compared to the lower bound

$$
f_{2 k}(n) \geq \frac{2 k!}{(2 k)!} \cdot n^{k}(1+o(1))
$$

given in Corollary 2.3.
2) It would be interesting to determine $f_{r}(n)$ precisely for $r>3$, or to improve our estimates. In particular, Lemma 2.2 and Lemma 3.2 for $r=4$ imply that

$$
\frac{1}{6}\left(n^{2}-3 n\right) \leq f_{4}(n) \leq \frac{1}{2}\left(n^{2}-5 n+6\right)
$$

for all n. It would be interesting to decide which of these two bounds is closer to the truth.

Acknowledgement. I would like to thank P. Frankl for fruitful discussions.

References

1. Aharoni, R., Linial, N.: Private communication
2. Graham, R.L., Lovász, L.: Distance matrix polynomials of trees. Advances in Math. 29, 60-88 (1978)
3. Graham, R.L., Pollak, H.O.: On the addressing problem for loop switching. Bell Syst. Tech. J. 50, 2495-2519 (1971)
4. Graham, R.L., Pollak, H.O.: On embedding graphs in squashed cubes. In: Lecture Notes in Mathematics 303, pp 99-110. New York-Berlin-Heidelberg: Springer-Verlag 1973
5. Lovász, L.: Problem 11.22. In: Combinatorial Problems and Exercises, p 73. Amsterdam: North Holland 1979
6. Peck, G.W.: A new proof of a theorem of Graham and Pollak. Discrete Math. 49, 327-328 (1984)
7. Tverberg, H.: On the decomposition of K_{n} into complete bipartite graphs. J. Graph Theory 6, 493-494 (1982)

Received: November 15, 1985
Revised: December 17, 1985

[^0]: * Research supported in part by Air Force Contract OSR $82-0326$ and by Allon Fellowship.

