Graphs and Combinatorics 2, 95-100 (1986)

Graphs and Combinatorics

© Springer-Verlag 1986

Decomposition of the Complete *r*-Graph into Complete *r*-Partite *r*-Graphs*

Noga Alon

Department of Mathematics, Tel Aviv University, Tel Aviv, Israel, and Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract. For $n \ge r \ge 1$, let $f_r(n)$ denote the minimum number q, such that it is possible to partition all edges of the complete r-graph on n vertices into q complete r-partite r-graphs. Graham and Pollak showed that $f_2(n) = n - 1$. Here we observe that $f_3(n) = n - 2$ and show that for every fixed $r \ge 2$, there are positive constants $c_1(r)$ and $c_2(r)$ such that $c_1(r) \le f_r(n) \cdot n^{-(r/2)} \le c_2(r)$ for all $n \ge r$. This solves a problem of Aharoni and Linial. The proof uses some simple ideas of linear algebra.

1. Introduction

For $n \ge r \ge 1$, let $f_r(n)$ denote the minimum number q, such that it is possible to partition all edges of the complete *r*-uniform hypergraph on *n* vertices into q pairwise edge-disjoint complete *r*-partite *r*-uniform hypergraphs.

Obviously, $f_1(n) = 1$. Graham and Pollak ([3, 4], see also [2, 5]) proved that $f_2(n) = n - 1$ for all $n \ge 2$. Simple proofs for this result were found by Tverberg [7] and Peck [6].

Aharoni and Linial [1] raised the natural problem of determining or estimating $f_r(n)$ for r > 2. In particular they asked if $f_r(n)$ is a nonlinear function of n, for some fixed r > 2.

In this note we answer this question in the affirmative by proving the following theorem, that determines the asymptotic behavior of $f_r(n)$ for every fixed r as n tends to infinity.

Theorem 1.1. For every fixed $r \ge 1$, there are two positive constants $c_1 = c_1(r)$ and $c_2 = c_2(r)$ such that

$$c_1 \cdot n^{[r/2]} \le f_r(n) \le c_2 \cdot n^{[r/2]}$$

for all $n \ge r$.

The lower bound is proved using some simple ideas of linear algebra. The method is similar to the one used by Tverberg [7] and by Graham and Pollak [3, 4], for determining $f_2(n)$. The upper bound is established by a recursive construction.

^{*} Research supported in part by Air Force Contract OSR 82-0326 and by Allon Fellowship.

It is worth noting that our construction supplies the exact value of $f_3(n) = n - 2$ for all $n \ge 3$.

2. The Lower Bound

We start with the following easy observation.

Lemma 2.1. For every $n \ge r \ge 2$

$$f_r(n) \ge f_{r-1}(n-1).$$

Proof. Suppose all edges of the complete r-uniform hypergraph on a set $N = \{1, 2, ..., n\}$ of n vertices are partitioned into $q = f_r(n)$ r-partite r-graphs (= r uniform hypergraphs) $H^1, H^2, ..., H^q$. Let E_i denote the set of edges of H^i and put $\overline{E}_i = \{e - \{n\}: e \in E_i, n \in e\}$. Clearly each nonempty \overline{E}_i is the set of edges of a complete (r-1)-partite (r-1)-graph. Moreover, the set of all nonempty \overline{E}_i 's forms a decomposition of all edges of the complete r - 1-uniform hypergraph on the n - 1 vertices $N - \{n\}$. Hence $f_{r-1}(n-1) \leq q = f_r(n)$, as needed.

In view of Lemma 2.1, the lower bound in Theorem 1.1 for odd values of r follows from the lower bound for even values of r, which we prove next.

Lemma 2.2. For all $n \ge 2k \ge 2$

$$f_{2k}(n) \ge 2 \cdot \frac{\binom{n}{k} - \binom{n}{k-1} - \binom{n}{k-3} - \dots - \binom{n}{k+1-2 \cdot \lceil k/2 \rceil}}{\binom{2k}{k}}.$$

Proof. Let $\underline{K} = \{K \subset N : |K| = k\}$ be the set of all $\binom{n}{k}$ k-subsets of $N = \{1, 2, ..., n\}$

and associate each $K \in \underline{K}$ with a variable x_K . Let H be a complete 2k-partite 2k-graph, whose (pairwise disjoint) vertex classes V_1, V_2, \ldots, V_{2k} are subsets of N. By definition, the edges of H are all 2k-subsets $A \subset N$, such that $|A \cap V_i| = 1$ for $1 \le i \le 2k$. We define, for each such H, a quadratic form Q(H) in the variables $\{x_K: K \in \underline{K}\}$ as follows.

 $Q(H) = \sum \{L_A(H) \cdot L_B(H): A, B \subset \{1, 2, ..., 2k\}, |A| = |B| = k, A \cap B = \emptyset, \\ 1 \in A\}, \text{ where, for } C \subset \{1, 2, ..., 2k\}, |C| = k,$

$$L_{c}(H) = \sum \{ x_{K} \colon K \in \underline{K}, |K \cap V_{c}| = 1 \text{ for all } c \in C \}.$$

Thus, Q(H) is a sum of $\frac{1}{2}\binom{2k}{k}$ products of the form $L_A(H) \cdot L_B(H)$, in which each factor is a linear combination of the x_K 's.

Put $q = f_{2k}(n)$, and suppose the edges of the complete r-graph on N are partitioned into q r-partite r-graphs H^1, H^2, \ldots, H^q . One can easily check that

$$\sum_{i=1}^{q} Q(H^{i}) = \sum \{ x_{K} \cdot x_{L} \colon K, L \in \underline{K}, K \cap L = \emptyset \}.$$
(2.1)

Indeed, if K, $L \in \underline{K}$ and $K \cap L = \emptyset$ then the product $x_K \cdot x_L$ appears only in $Q(H^i)$,

where H^i is the unique H^j containing $K \cup L$ as an edge, and if $K \cap L \neq \emptyset$, then $x_k \cdot x_L$ appears in no $Q(H^i)$.

We next claim that

$$\begin{cases} \sum \{x_K \cdot x_L : K, L \in \underline{K}, K \cap L = \emptyset\} \\ = \frac{1}{2} \sum_{i=0}^k (-1)^i \sum_{A \subset N, |A|=i} \left(\sum_{K \in \underline{K}, A \subset K} x_K\right)^2. \end{cases}$$
(2.2)

Indeed, if $K, L \in \underline{K}$ and $|K \cap L| = j$, $(0 \le j < k)$, then the coefficient of $x_K \cdot x_L$ in the right hand side of (2.2) is $\sum_{i=0}^{j} (-1)^i {j \choose i}$, which is 1 if j = 0 and 0 if j > 0. For K = L, the coefficients of x_K^2 in the right hand side of (2.2) is $\frac{1}{2} \sum_{i=0}^{k} (-1)^i {k \choose i} = 0$. Thus (2.2) holds.

Substituting (2.2) and the definition of the $Q(H^i)$'s into (2.1) we conclude that

$$\begin{cases} \sum_{i=1}^{4} \sum \{L_{A}(H^{i}) \cdot L_{B}(H^{i}): A, B \subset \{1, \dots, 2k\}, |A| = |B| = k, A \cap B = \emptyset, 1 \in A\} \\ = \frac{1}{2} \sum_{i=0}^{k} (-1)^{i} \sum_{A \subset N, |A| = i} \left(\sum_{K \in \underline{K}, A \subset K} x_{K}\right)^{2} \end{cases}$$
(2.3)

Let V be the linear subspace of the real $\binom{n}{k}$ -dimensional space of the x_K 's determined by the following set of

$$\frac{1}{2}\binom{2k}{k} \cdot q + \binom{n}{k-1} + \binom{n}{k-3} + \dots + \binom{n}{k+1-2\lceil k/2\rceil}$$

linear equations.

$$\begin{cases} L_{A}(H^{i}) = 0 \text{ for all } 1 \le i \le q \text{ and } A \subset \{1, 2, \dots, 2k\}, |A| = k, 1 \in A.\\ \sum_{K \in \underline{K}, A \subset K} x_{K} = 0 \text{ for all } A \subset N, |A| \in \{k - 1, k - 3, \dots, k + 1 - 2\lceil k/2 \rceil\} \end{cases}$$
(2.4)

We claim that V is the zero subspace. Indeed, suppose $\{\overline{x}_k: K \in \underline{K}\} \in V$. Then \overline{x}_K satisfies (2.4), and in view of (2.3) we conclude that

$$0 = \frac{1}{2} \cdot (-1)^k \left\{ \sum_{K \in \underline{K}} \overline{x}_K^2 + \sum_{A \subset N, |A|=k-2} \left(\sum_{K \in \underline{K}, A \subset K} \overline{x}_K \right)^2 + \cdots \right\},$$

and hence $\bar{x}_{K} = 0$ for all $K \in \bar{K}$.

Therefore, the number of linear equations in the system (2.4) is at least $\binom{n}{k}$ and the assertion of Lemma 2.2 follows.

Combining Lemmas 2.1 and 2.2 we obtain

Corollary 2.3. For every fixed $r \ge 1$, $f_r(n) \ge c_r \cdot n^{[r/2]} \cdot (1 + o(1))$ as $n \to \infty$, where $c_r = \frac{2[r/2]!}{(2[r/2])!}$.

Remarks.

1) Lemma 2.2 with k = 1 reduces to Graham-Pollak's result; $f_2(n) \ge n - 1$, (which is, of course, sharp).

2) Lemma 2.1 with r = 3 asserts $f_3(n) \ge f_2(n-1) = n-2$. As shown in the next section this result is also sharp.

3) A trivial lower bound for $f_r(n)$ is $f_r(n) \ge \binom{n}{r} / \binom{n}{r}^r$, since the number of edges of any complete r-partite r-graph on n vertices is not greater than $(n/r)^r$. This trivial bound is much weaker than the one proved above for all r = o(n), but is better for, e.g., $r = \lfloor n/2 \rfloor$.

3. The Upper Bound

In this section we prove the upper bound for $f_r(n)$ given in Theorem 1.1, using some simple recursive constructions. We first determine $f_3(n)$ for all $n \ge 3$.

Lemma 3.1. For all $n \ge 3$

$$f_3(n) = n - 2$$

Proof. By Lemma 2.1 and Graham-Pollak's result

$$f_3(n) \ge f_2(n-1) = n-2.$$

We prove that $f_3(n) \le n-2$ by induction on *n*. For n = 2, 3 the result is trivial. Assuming the result for all n', n' < n, we prove it for n, (n > 3). Put $N = \{1, 2, ..., n\}$ and $N_i = \{2i - 1, 2i\}$ for $1 \le i \le \lfloor n/2 \rfloor$. For odd *n* define also $N_{\lfloor n/2 \rfloor} = \{n\}$. We claim that

$$f_3(n) \le \lfloor n/2 \rfloor + f_3(\lfloor n/2 \rfloor).$$
 (3.1)

Indeed, put $q = f_3(\lceil n/2 \rceil)$ and let H^1, \ldots, H^q be a decomposition of the complete 3-graph on $\lceil n/2 \rceil$ vertices $\{1, 2, \ldots, \lceil n/2 \rceil\}$ into q complete 3-partite 3-graphs. For $1 \le i \le q$, let V_1^i, V_2^i and V_3^i denote the vertex-classes of H^i . Let \overline{H}^i be the 3-partite 3-graph whose vertex classes are $\bigcup \{N_j: j \in V_1^i\}, \bigcup \{N_j: j \in V_2^i\}$ and $\bigcup \{N_j: j \in V_3^i\}$. For $1 \le j \le \lceil n/2 \rceil$, let \overline{H}^{q+j} be the 3-partite 3-graph whose vertex classes are $\{2i - 1\},$ $\{2i\}$ and $N - \{2i - 1, 2i\}$. One can easily check that the hypergraphs $\{\overline{H}^i\}_{i=1}^{q+\lceil n/2 \rceil}$ form a dcomposition of all edges of the compolete 3-graph on N into 3-partite 3-graphs. This establishes (3.1). Hence, by the induction hypothesis,

$$f_3(n) \le [n/2] + f_3(\lceil n/2 \rceil) \le [n/2] + \lceil n/2 \rceil - 2 = n - 2.$$

Let N_1 and N_2 be two disjoint sets of vertices, and let H_i be an r_i -graph on N_i , $(1 \le i \le 2)$. We denote by $H_1 + H_2$ the $(r_1 + r_2)$ -graph on $N_1 \cup N_2$ whose edges are all edges $e_1 \cup e_2$, where e_i is an edge of H_i (i = 1, 2). One can easily check that if H_i is a complete r_i -partite r_i -graph then $H_1 + H_2$ is a complete $(r_1 + r_2)$ -partite $(r_1 + r_2)$ -graph. For notational convenience let us agree that $f_0(n) = 1$ for all n.

Lemma 3.2. Suppose $n \ge r \ge 4$, then

$$f_r(n) \leq \sum_{i=0}^r f_i(\lfloor n/2 \rfloor) \cdot f_{r-i}(\lceil n/2 \rceil).$$

98

Proof. Put $N = \{1, 2, ..., n\}$, $N_1 = \{1, 2, ..., \lfloor n/2 \rfloor\}$, $N_2 = \{\lfloor n/2 \rfloor + 1, ..., n\}$. For $0 \le i \le r$ let \underline{H}^i be a family of $f_i(\lfloor n/2 \rfloor)$ complete *i*-partite *i*-graphs that decompose the complete *i*-graph on N_1 . (\underline{H}^0 consists of one graph whose only edge is the empty edge.) Similarly, let \underline{G}^j be a family of $f_j(\lfloor n/2 \rfloor)$ complete *j*-partite *j*-graphs that decompose the complete *j*-graph on N_2 ($0 \le j \le r$). Define a family \underline{F} of $\sum_{i=0}^r f_i(\lfloor n/2 \rfloor)$. $f_{r-i}(\lfloor n/2 \rfloor)$ complete *r*-partite *r*-graphs on *N* by

$$\underline{F} = \bigcup_{i=0}^{\prime} \{ H^i + G^{r-i} \colon H^i \in \underline{H}^i, G^{r-i} \in \underline{G}^{r-i} \}.$$

One can easily check that the members of \underline{F} form a decomposition of the complete r-graph on N. This completes the proof.

We can now prove the upper bound for $f_r(n)$ given in Theorem 1.1 by double induction on r and n. Since $f_r(n)$ is a monotone increasing function of n, it is enough to prove it when n is a power of 2, which we assume, for convenience. By Lemma 3.1 (and trivial constructions for $r \le 2$) $f_r(n) \le c_r \cdot n^{[r/2]}$ for r = 0, 1, 2, 3 and every n, where $c_0 = c_1 = c_2 = c_3 = 1$. Clearly, if n < r then $f_r(n) \le c_r \cdot n^{[r/2]}$ for every positive c_r . Assuming that

$$f_{r'}(n') \le c_{r'} \cdot n'^{[r'/2]} \tag{3.2}$$

for all r' < r and all $n' = 2^j$, and for r' = r and $2^j = n' < n = 2^i$, we prove that if c_r is properly chosen then (3.2) holds also for (r, n). Indeed, by Lemma 3.2 and the induction hypothesis

$$f_{r}(n) \leq \sum_{i=0}^{r} f_{i}(n/2) f_{r-i}(n/2) \leq \sum_{i=0}^{r} c_{i} \cdot c_{r-i}(n/2)^{\lfloor i/2 \rfloor + \lfloor (r-i)/2 \rfloor}$$
$$\leq \sum_{i=0}^{r} c_{i} \cdot c_{r-i} \cdot (n/2)^{\lfloor r/2 \rfloor} = \frac{1}{2^{\lfloor r/2 \rfloor}} \left(2c_{r} + \sum_{i=1}^{r-1} c_{i} \cdot c_{r-i} \right) n^{\lfloor r/2 \rfloor}$$

Hence, if we define the c_r 's by

$$c_0 = c_1 = c_2 = c_3 = 1$$

and $c_r \cdot (2^{[r/2]} - 2) = \sum_{i=1}^{r-1} c_i \cdot c_{r-i}$ for $r \ge 4$, (3.3)

then $f_r(n) \le c_r \cdot n^{[r/2]}$ for every r and every $n = 2^i$. This implies the validity of the upper bound for $f_r(n)$ given in Theorem 1.1.

Remarks.

1) One can easily check that the constants $\{c_r\}_{r=0}^{\infty}$ defined by (3.3) satisfy

$$c_r \leq \frac{8^{r-1}}{\lceil r/2 \rceil !}.$$

By a somewhat more careful analysis we can show that the construction described above implies that for every fixed $k \ge 1$ $f_{2k}(n) \le \frac{1}{k!} \cdot n^k(1 + o(1))$, as $n \to \infty$. This should be compared to the lower bound

N. Alon

$$f_{2k}(n) \ge \frac{2k!}{(2k)!} \cdot n^k (1 + o(1))$$

given in Corollary 2.3.

2) It would be interesting to determine $f_r(n)$ precisely for r > 3, or to improve our estimates. In particular, Lemma 2.2 and Lemma 3.2 for r = 4 imply that

$$\frac{1}{6}(n^2 - 3n) \le f_4(n) \le \frac{1}{2}(n^2 - 5n + 6)$$

for all *n*. It would be interesting to decide which of these two bounds is closer to the truth.

Acknowledgement. I would like to thank P. Frankl for fruitful discussions.

References

- 1. Aharoni, R., Linial, N.: Private communication
- Graham, R.L., Lovász, L.: Distance matrix polynomials of trees. Advances in Math. 29, 60-88 (1978)
- Graham, R.L., Pollak, H.O.: On the addressing problem for loop switching. Bell Syst. Tech. J. 50, 2495-2519 (1971)
- Graham, R.L., Pollak, H.O.: On embedding graphs in squashed cubes. In: Lecture Notes in Mathematics 303, pp 99-110. New York-Berlin-Heidelberg: Springer-Verlag 1973
- 5. Lovász, L.: Problem 11.22. In: Combinatorial Problems and Exercises, p 73. Amsterdam: North Holland 1979
- 6. Peck, G.W.: A new proof of a theorem of Graham and Pollak. Discrete Math. 49, 327-328 (1984)
- 7. Tverberg, H.: On the decomposition of K_n into complete bipartite graphs. J. Graph Theory 6, 493-494 (1982)

Received: November 15, 1985 Revised: December 17, 1985